Voluntary reaction time and long-latency reflex modulation.
نویسندگان
چکیده
Stretching a muscle of the upper limb elicits short (M1) and long-latency (M2) reflexes. When the participant is instructed to actively compensate for a perturbation, M1 is usually unaffected and M2 increases in size and is followed by the voluntary response. It remains unclear if the observed increase in M2 is due to instruction-dependent gain modulation of the contributing reflex mechanism(s) or results from voluntary response superposition. The difficulty in delineating between these alternatives is due to the overlap between the voluntary response and the end of M2. The present study manipulated response accuracy and complexity to delay onset of the voluntary response and observed the corresponding influence on electromyographic activity during the M2 period. In all active conditions, M2 was larger compared with a passive condition where participants did not respond to the perturbation; moreover, these changes in M2 began early in the appearance of the response (∼ 50 ms), too early to be accounted for by voluntary overlap. Voluntary response latency influenced the latter portion of M2, with the largest activity seen when accuracy of limb position was not specified. However, when participants aimed for targets of different sizes or performed movements of various complexities, reaction time differences did not influence M2 period activity, suggesting voluntary activity was sufficiently delayed. Collectively, our results show that while a perturbation applied to the upper limbs can trigger a voluntary response at short latency (<100 ms), instruction-dependent reflex gain modulation remains an important contributor to EMG changes during the M2 period.
منابع مشابه
The long-latency reflex is composed of at least two functionally independent processes.
The nervous system counters mechanical perturbations applied to the arm with a stereotypical sequence of muscle activity, starting with the short-latency stretch reflex and ending with a voluntary response. Occurring between these two events is the enigmatic long-latency reflex. Although researchers have been fascinated by the long-latency reflex for over 60 years, some of the most basic questi...
متن کاملReaction time and long-latency reflex modulation Running head: Reaction time and long-latency reflex modulation
8 Christopher J. Forgaard, Ian M. Franks, Dana Maslovat, Laurence Chin, and Romeo Chua 9 1. School of Kinesiology, University of British Columbia 10 2. Department of Kinesiology, Langara College 11 12 13 14 15 16 17 18 19 Address Correspondence to: 20 Dr. Romeo Chua 21 School of Kinesiology, University of British Columbia 22 War Memorial Gymnasium 210-6081 University Boulevard 23 Vancouver, Bri...
متن کاملPhysiological mechanisms of rigidity in Parkinson's disease.
Electromyographic responses of triceps surae and tibialis anterior produced by dorsiflexion stretch were studied in 17 patients with Parkinson's disease. Most patients showed increased muscular activity when attempting to relax. A few patients showed an increase of short-latency reflexes when relaxed and when exerting a voluntary plantarflexion prior to the stretch. Many patients showed long-la...
متن کاملThe effect of desmopressin infusion into dorsal raphe nucleus on pain modulation and morphine analgesia in rats tail flick reflex
Recent neuroanatomical and behavioral evidence has indicated that vasopressin (VA) increases pain threshold. The dorsal raphe nucleus (DRN) is an important nucleus in pain modulation. Anatomical studies have shown that DRN receives vasopressinergic fibers originating in the hypothalamic paraventricular nucleus. The aim of the present study was to examine the effects of intra-DRN injection of de...
متن کاملThe effect of desmopressin infusion into dorsal raphe nucleus on pain modulation and morphine analgesia in rats tail flick reflex
Recent neuroanatomical and behavioral evidence has indicated that vasopressin (VA) increases pain threshold. The dorsal raphe nucleus (DRN) is an important nucleus in pain modulation. Anatomical studies have shown that DRN receives vasopressinergic fibers originating in the hypothalamic paraventricular nucleus. The aim of the present study was to examine the effects of intra-DRN injection of de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 114 6 شماره
صفحات -
تاریخ انتشار 2015